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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

The partition sum of an ideal gas in a random potential 

v. BEZAK 
Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, 
Czechoslovakia 
144s. wceived 18th June 1970 

Abstract. The partition sum (the diagonal element of the one-particle density 
matrix) of a gas of non-interacting boltzons in a random potential is calculated. 
I t  is shown that the author’s formula for the averaged density matrix must be 
subject to a minor modification, being multiplied by a correction factor, A 
considerable simplification of the formula is achieved in a limiting case which 
was not dealt with previously but may be important enough if one has in mind 
electrons in amorphous semiconductors. 

1. Introduction 
This contribution should be considered rather as a mathematical addendum to 

the author’s recent paper (Bezik 1970) where, in 4 3.3--‘Problem of the normaliza- 
tion constant’ (cf. formula 43)-the following path integral was calculated : 

” 1; du’ du”(x(u’) - x(z~”))~ . 1 m fiB 
dUk2(U)- - 3 x ( d  = j 9 d u )  exP(- 5 j 0 282L2, 0 

(1) 
JBx(u) means Feynman’s path integration (Feynman and Hibbs 1965); a normaliza- 
tion factor is assumed to be involved in the path integral here, so that 

Y5(0) = 1. (2) 

The integration is taken over all closed paths x(z1); one may take 

x(0) = x(h@) = 0. (3) 

The  problem of calculating integral (1) has arisen with calculating the diagonal 
element of the density matrix (i.e. the partition sum) of a gas of non-interacting 
Boltzons of mass m situated in a static random potential at the temperature T,  
/3 = l / k g T ( k g  being the Boltzmann constant); 7 and L,  respectively, are the disper- 
sion and the correlation length of the potential energy which is defined as a 
Gaussian random function. 

The partition sum is given by the formula 

where YB(q) = Yz3(77). 

wrote it as the inequality L,,, < L-reads 
The form of integral (1) was derived under a condition which-as the author 
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where 

Having discussed inequality ( j), the author only considered the extreme cases when 
the quantity 

is either small or large with respect to unity (mG is then simple). Moreover, the cal- 
culation of the normalization constant (1) was felt as a subsidiary problem since 
integral (1) does not decline remarkably from unity as long as y < 6 which condition 
was borne in mind in calculating the energy-level density (the basic function dealt 
with in the previous paper). Therefore, the mathematical improvement of the theory 
given here does not lead, for small y, to qualitatively new physical conclusions in 
comparison with the previous paper. 

Nevertheless, we will now show that integral (1) can be calculated exactly for 
any value of y. 

y = +HwGp (7 )  

2. The eigenvalue problem of the theory 
I t  can be proved easily that the exponent in integral (1) can be written in the form 

- 1: i”” du’du’’x(u’)A(u’, u”)x(u”) 
0 

where 

One can solve the integro-differential equation 
h4 f du’A(u, u’)pn(u’) = An2(?) p,(u) (10) 

(11) 

W O  

which requires that 

The  eigenfunctions en(.) are either odd or even with respect to the change U -+ H p  - U :  

pn(0) = yn(Fq3) = 0. 

6, is the nth root of the equation 

11 + I 
This equation has real roots (and one may confine oneself to the positive ones) if 
y < 1/3) but has also two imaginary roots (differing only by signs so that one may 
take into account one of them-say, the root lying in the upper half of the imaginary 
axis) if y > 1 / 3 .  For convenience, in the case when y < 4 3 ,  let 6, be taken as the 
nth positive root of equation (13), that is 0 < E ,  < [ n + l  (n  = 1, 2, 3, ...). On the 
other hand, for the case when y > q 3 ,  let the symbol E ,  be used for the (n- 1)th 
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positive root of equation (13)  (n  -- 2, 3 ,4 ,  ...), but the 'first' root f 1  being the imagin- 
ary one, that is, f1 = it where E is the (positive) root of the equation 

(The eigenfunction pleven(u) is reduced to the form 

(U -+rZip)' if y = 213 and cosh {(Zt/rZP)(u -4rZP)) - cosh 5 
if 
y -+ 1/3,  we have f1  -+ 0.) 

the development 

> 21'3. The 'first' root El is a continuous function of the argument y. For 

Normalizing the functions pn(u) to unity on the interval 0 < U < F;?P and using 

2 

.(U) = 2 ( a n y , o d d ( U )  + b,p,e"e"(U)} (lj) 
n = l  

one obtains the reduction of the expression (8) into the form 

nz 
- - 2 {(hnodd)2a,2 + (X,even)2bnz). 

27% ,=I 

If one takes into account that 

I 9 x ( u )  cc jm lm dandbn 
n = l  - m  - m  

one obtains the product 
ys(q) = $a(q) # b ( T ) *  

The factors ,a,(,) and 9 b ( ~ )  can be calculated by the straightforward integration 
with respect to all the coefficients a, and b,  (n = 1, 2, 3, ...). The coefficients a ,  
and b ,  are dependent on 7 but not the Jacobians 

a{**.,  %(T),  ...} q..., U T ) ,  ...I 
e( ..., an(0) ,  . ..} 

bxhich are equal to unity. Hence we arrive at the formulae: 

6{ .,., b,(O), ...} 

After inserting the corresponding values A, into formulae (IS), one obtains the results 

N 
(Note that r In=l  c = c". )  
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3. Conclusions 

1970), the result for - / t b ( ~ )  is new and is larger by the factor 
Whilst the result for ,aa(?) is the same as in the author’s previous paper (Bezlk 

fi 4. -4) 
n = l  5 n  

Thus, instead of formula (47) of the previous paper, for the averaged density matrix, 
the slightly modified formula 

is more correct. (Substantially more correct if y N ~ ’ 3  or y 9 2’3.) 
Finally, it should be pointed out that the roots f , ,  except E l ,  may be approximated 

with a fairly good accuracy by the values n(n - Q) provided that y is sufficiently large. 
For instance, if y =1 ~ ’ 3 ,  the relative error of the estimate f z  - 3 ~ 1 2  = 4.71 is 
about 0.6!,;. Replacing 5, ( n  = 2, 3, 4, ...) by ~ ( 9 z - i )  for y > 213 and using the 
same formula as in (19a) to remoye the cumbersome infinite multiple product, one 
obtains, after a simple calculation, the formula 

where is given by equation (14). Formula (20) is then reduced to the formula 

(22) 
mG 

x exp(Q772P2) exp ( - -- ( r  - r , ) ~ )  
2h2P 

for y > \/3. 
Having in mind the random potential realized in an amorphous semiconductor 

(say), the success with the reduction to formula (22) is considerable since the case 
y > 1;3 seems to be much more interesting than the case y < 1 when XJq) N 1. 
This success also supports optimistic hopes that some other functions like (20) 
(e.g. the function (Cb,(r1,  r,) Co, ( r3 ,  r4)) which is expected to occur in calculations 
of kinetic coefficients), even though they may look very complicated at first if derived 
in the way suggested here and in the previous paper, can also be simplified reasonably 
(at least in limiting cases of parameters involved) and used as a flexible tool in the 
theory of disordered systems. 
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